A uniqueness theorem for an inverse problem
نویسندگان
چکیده
منابع مشابه
A Uniqueness Theorem of the Solution of an Inverse Spectral Problem
This paper is devoted to the proof of the unique solvability ofthe inverse problems for second-order differential operators withregular singularities. It is shown that the potential functioncan be determined from spectral data, also we prove a uniquenesstheorem in the inverse problem.
متن کاملa uniqueness theorem of the solution of an inverse spectral problem
this paper is devoted to the proof of the unique solvability ofthe inverse problems for second-order differential operators withregular singularities. it is shown that the potential functioncan be determined from spectral data, also we prove a uniquenesstheorem in the inverse problem.
متن کاملA uniqueness theorem for a boundary inverse problem
Let DcR' be a bounded domain with a smooth boundary r, A u + q ( x ) u = O in D u = f , u N = h on Iand ~ ( x ) E L ~ ( D ) . From knowledge of the set {f, h} where f runs through C'(r) the coefficient 9(x) is uniquely recovered. Analytical formulae for y(x) are given. Applications are considered. Let D c R3 be a bounded domain with a smooth boundary r, q(x) E L"(D) , A u + q ( x ) u = O in D U...
متن کاملUniqueness theorem for inverse scattering problem with non-overdetermined data
Let q(x) be real-valued compactly supported sufficiently smooth function. It is proved that the scattering data A(−β, β, k) ∀β ∈ S, ∀k > 0 determine q uniquely. MSC: 35P25, 35R30, 81Q05; PACS: 03.65.Nk
متن کاملTheorem for an Inverse Problem
Let VZu+k2u+k2a~(z)u+V.(a~(~)Vu) = -6(cc-y) inR3, where al(z) EL’(D), a&) E H’(D), D E R3_ = {z : 13 < 0) is a finite region, aj(Z) = 0 outside of D, j = 1,2, 1 + 02 > 0, al = El. Assume that thedatau(l,y,k),V~,yEP={I:13=0}8ndallkE(O,ko),ko>O is an arbitrary small number, are given. THEOREM. The above data determine aj(z), j = 1,2, uniquely.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 1988
ISSN: 0893-9659
DOI: 10.1016/0893-9659(88)90069-9